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Abstract

A fast running computational algorithm based on the volume averaging technique (VAT) is developed to simulate

conjugate heat transfer process in an electronic device heat sink. The goal is to improve computational capability in the

area of heat exchangers and to help eliminate some of empiricism that leads to overly constrained designs with resulting

economic penalties.

VAT is tested and applied to the transport equations of airflow through an aluminum (Al) chip heat sink. The

equations are discretized using the finite volume method (FVM). Such computational algorithm is fast running, but still

able to present a detailed picture of temperature fields in the airflow as well as in the solid structure of the heat sink. The

calculated whole-section drag coefficient, Nusselt number and thermal effectiveness are compared with experimental

data to verify the computational model and validate numerical code. The comparison also shows a good agreement

between FVM results and experimental data.

The constructed computational algorithm enables prediction of cooling capabilities for the selected geometry. It also

offers possibilities for geometry improvements and optimization, to achieve higher thermal effectiveness.

� 2003 Elsevier Science Ltd. All rights reserved.

1. Introduction

Heat exchangers are found in a number of different

industrial sectors where the need to transport heat from

medium to medium exists. They also have an important

role in everyday life as they are one of the basic elements

of heating, cooling, refrigerating and air-conditioning

installations. Despite the crucial role of heat exchangers,

there is still a lot of empiricism involved in their design.

Although present-day guidelines provide ad-hoc solu-

tions to the design problems, a unified approach based

on simultaneous modeling of thermal hydraulics and

structural behavior has not yet been developed and

utilized. As a consequence, designs are overly con-

strained, with resulting economic penalties. Therefore,

the optimization of a heat exchanger design can bring

significant cost reductions to industry.

The objective of our work is to develop a unified, fast

running, numerical algorithm for the calculation of heat

exchanger morphologies using hierarchic modeling of

the coolant and structure thermal behavior.

In the past, heat exchanger development was clearly

dominated by interests of the military and power in-

dustries [1]. As the amount of heat transported through

heat exchangers is the highest in nuclear installations,

steam generators and heat exchangers in nuclear power

reactors have been the focus of researchers� attention.
This is the reason why the most experimental work was

done with isothermal circular tubes [2–7,9] etc. Although

some of the work is very comprehensive [6,7], most of

these studies favored a circular geometry and did not

include any other form of internal structure.
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During the past few years, the electronics industry

has been demanding more and more efficient heat ex-

changer designs. In particular, the speed of electronic

chips is seriously bounded by the thermal power that the

chips produce. As a consequence, electronic chips have

to be intensively cooled using specially designed heat

exchangers submerged into air or water flow [9–14]. In

contrast to the previous case, where the heat exchanging

structures are isothermal, the heat exchangers in the

electronics industry consist mostly of highly conducting

materials. This further complicates numerical calcula-

tions as well as experimental work due to the conjugate

nature of heat transfer [15].

The widespread use of heat exchangers across many

industrial sectors has caused their development to take

place in a piecemeal fashion in a number of rather un-

related areas. Much of the technology, familiar in one

sector, moved only slowly over the boundaries into an-

other sector [16]. To overcome historic differences, a

unified description for fluid and heat flow through a

solid matrix has to be found. One of the suitable options

is the volume averaging technique (VAT), where trans-

port processes in a heat exchanger are modeled as po-

rous media flow [17]. This generalization allows us to

unify the heat transfer calculation techniques for differ-

ent kinds of heat exchangers and their structures. The

case-specific geometrical arrangements, material prop-

erties and fluid flow conditions enter the computational

algorithm only as a series of precalculated coefficients.

This clear separation between the model and the case-

specific coefficients simplifies the procedure to determine

the optimum heat transfer conditions.

In this work, attention will be focused on volume

averaging and on the underlying VAT. Applying VAT,

the flow variables are averaged over a representative

elementary volume (REV). The variations, which occur

on a scale smaller than the averaged volume, have to be

modeled separately in the form of closure models. Al-

though the details of the modeled flow are lost due to the

averaging procedure, the hierarchical modeling principle

of VAT represents a theoretically rigorous methodology

for simulation of multi-component flow systems.

Nomenclature

Ac flow contact area of the test section

Ag heat sink ground area

Ao interface area in REV

A? area perpendicular to flow in the channel

c specific heat

Cd drag coefficient

d pin-fins diameter

dh ¼ 4Vf=Ac hydraulic diameter
FVM finite volume method

g arbitrary function

h arbitrary function, heat transfer coefficient

H height

Hb height of the solid base-plate

L length of the test section

p pressure

px pitch between pin-fins in x-direction
py pitch between pin-fins in y-direction
Dp pressure drop across the whole test section

REV representative elementary volume

Q heat flow

Reh ¼ �uudh=mf Reynolds number
S ¼ Ao=V specific surface

t time

T temperature

Tg ground temperature, z ¼ �Hb position
Tif bottom temperature, z ¼ 0 position
Tin inflow temperature, x ¼ 0 position
Tout outflow temperature, x ¼ L position
u streamwise velocity

v velocity vector

V representative elementary volume

Vk volume occupied by phase k
W width of the test section, mechanical work

x general spatial coordinate, streamwise co-

ordinate

y horizontal spanwise coordinate

z vertical spanwise coordinate

Greek symbols

a volume fraction

b arbitrary scalar

k thermal diffusivity

K area of integration

l dynamic viscosity

m kinematic viscosity

q density

X volume of integration

Subscripts/superscripts

b base

f fluid phase

k phasic variable

i; j indexes

s solid phase

Symbols

h i interphase average
� intraphase average
0 discrepancy from the intraphase average
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The VAT was initially proposed in the 1960s by

Anderson and Jackson [18], Slattery [19], Marle [20],

Whitaker [21] and Zolotarev and Redushkevich [22].

Many of the important details and examples of appli-

cations can be also found in books by Dullien [23],

Kheifets and Neimark [24], and Adler [25]. The method

was expanded to problems of turbulent transport in

porous media by Primak et al. [26], Sheherban et al. [27],

Travkin et al. [28–30] and Travkin and Catton [31–33].

Travkin and Catton [33] also worked further on devel-

opment of VAT for heterogeneous media applicable to

non-linear physical phenomena in thermal science and

fluid mechanics. Their mathematically strict derivation

of porous media transport equations also represents the

theoretical foundation of this work.

The design of heat exchangers is a well-studied sub-

ject due to its importance. Nevertheless, the proposed

VAT, which is based on rigorous scientific methodology,

has rarely been applied to conjugate heat transfer

problems in heat exchangers. Therefore, the article

presents the VAT formulation and solution of conjugate

heat transfer problem for an aluminum (Al) heat sink

used as an electronics cooling device.

2. Volume averaging technique (VAT)

The fluid-structure interaction and heat transfer in a

heat exchanger can be described with basic mass, mo-

mentum and heat transport equations. For a model to

have short computing times, the transport equations are

averaged over a REV as presented in Fig. 1. The method

produces porous media flow equations, where each

phase and its properties are separately defined over the

whole simulation domain. In order to understand the

model and its results, the theoretical foundations of

VAT must be given.

In the present work, the phase k fraction is defined as
the ratio between the portion of the REV occupied by

phase k and the total REV:

ak ¼
Vk
V
: ð1Þ

In the following developments, two kinds of aver-

aging are used. If the variable h, which is defined in the
phase k is averaged over the total REV (Eq. (2)), the

expression ‘‘interphase average’’ is used,

hhik ¼ hhki ¼
1

V

Z
Vk

hdX: ð2Þ

More convenient is to use the average of the variable h
over the phase k control volume Vk ( Eq. (3)). In this
case, the expression ‘‘intraphase average’’ is used.

�hhk ¼
1

Vk

Z
Vk

hdX; ð3Þ

where h0 ¼ h� �hhk . Thus h0 is defined as a discrepancy
from the intraphase average �hhk in the volume Vk which is
occupied by the phase k. From the definitions (2) and

(3), the relationship between interphase and intraphase

average is

hhik ¼ ak
�hhk : ð4Þ

When the phase-interface is fixed in space, the vol-

ume averaging is a linear operator:

hhþ gik ¼ hhik þ hgik ; ð5Þ

hbhik ¼ bhhik

and

ðhþ gÞk ¼ �hhk þ �ggk ; ð6Þ

ðbhÞk ¼ b�hhk :

where h and g are two independent function and b is a
constant.

If the composition of the considered multiphase

medium is steady, the average of the time derivative can

be treated as

oh
ot

� �
k

¼ o

ot
hhik and

oh
ot

� �
k

¼ o

ot
�hhk : ð7Þ

Applying volume averaging to a spatial derivative

produces two terms:

oh
oxj

� �
k

¼ o

oxj
hhik þ

1

V

Z
Ao

hdKj and

oh
oxj

� �
k

¼ o

oxj
�hhk þ

1

Vk

Z
Ao

h0 dKj; ð8Þ

where the last term in both cases is an interface exchange

term.

 

Fig. 1. Averaging over REV.
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Using the VAT basic rules (1)–(8), the mass, mo-

mentum and energy transport equations are developed

for laminar steady-state flow in porous media. The index

f , when marking intraphase average velocity, is omitted
to avoid double indexing.

When the spatial differential rule (8) together with

Eq. (4) is applied, the mass transport equation can be

written as:

af
o�vvi
oxi

¼ 0: ð9Þ

The derivation of the momentum transport equation

for porous media flow starts from the momentum

equation for steady-state incompressible flow, where the

effect of gravity is neglected. As the considered solid

structure is uniform in space, the phase fraction af is
constant, allowing one to write:

afqf�vvj
o�vvi
oxj

¼ �af
o�ppf
oxi

þ aflf
o2�vvi
ox2j

� 1

V

Z
Ao

pdKi

þ lf
V

Z
Ao

ovi
oxj
dKj: ð10Þ

The integrals in Eq. (10) are a consequence of the

volumetric averaging. They capture momentum trans-

port on the fluid–solid interface. As in turbulent flow, a

separate model in the form of a closure relation is nee-

ded. In the present case, the integrals are replaced with

the following empirical drag relation,

�
Z
Ao

pdKi þ lf

Z
Ao

ovi
oxj
dKj ¼

1

2
Cdqf�vv

2
i Ao; ð11Þ

where Cd is a drag coefficient that depends on a local
Reynolds number. Inserting the empirical correlation

(11) into Eq. (10), the momentum equation for porous

media flow is given by

afqf�vvj
o�vvi
oxj

¼ �af
o�ppf
oxi

þ aflf
o2�vvi
ox2j

þ 1
2
Cdqf�vv

2
i S; ð12Þ

where S is the specific surface of the structure.
The energy transport equation for the fluid phase is

developed from the energy transport equation for steady-

state incompressible flow. For uniform porous media, it

is written as

afqfcf�vvj
oT f
oxj

¼ afkf
o2T f
ox2j

þ kf
V

Z
Ao

oT
oxj
dKj: ð13Þ

The integral term in Eq. (13) represents the interfacial

heat exchange between the fluid flow and the solid

structure and requires additional modeling. In the pre-

sent case, an empirical linear relation between the fluid

and the solid temperature is taken as an appropriate

model for the interphase heat flow:

�kf

Z
Ao

oT
oxj
dKj ¼ hðT f � T sÞAo; ð14Þ

where h is a heat transfer coefficient that depends on the
local Reynolds number. By substituting the relation (14)

into Eq. (13), the fluid flow energy transport equation

can be written as:

afqfcf�vvj
oT f
oxj

¼ afkf
o2T f
ox2j

� hðT f � T sÞS: ð15Þ

In the solid phase, thermal diffusion is the only heat

transport mechanism. Therefore, the energy transport

equation is reduced to the simple diffusion equation:

0 ¼ asks
o2T s
ox2j

þ ks
V

Z
Ao

oT
oxj
dKj; ð16Þ

where the integral captures the interphase heat ex-

change. Closure is obtained by substituting the linear

relation:

ks

Z
Ao

oT
oxj
dKj ¼ hðT f � T sÞAo ð17Þ

in Eq. (16). The VAT energy transport equation for

solid structure is then written as

0 ¼ asks
o2T s
ox2j

þ hðT f � T sÞS: ð18Þ

3. Simulation setup

The geometry of the simulation domain follows the

geometry of the experimental test section used in the

Morrin-Martinelli-Gier Memorial Heat Transfer Labo-

ratory at University of California, Los Angeles, where

experimental data described in [34] were obtained.

The general arrangement of the heat sink is given in

Fig. 2. The length L as well as the width W of the heat

sink are 0.1143 m (4.5 in.), whereas the height H is

0.0381 m (1.5 in.). The conductive base plate, which

connects pin-fins, is 0.00635 m (0.25 in.) high.

The heat sink solid structure, which is exposed to

air cross-flow, consists of 31 rows of aluminum pin-fins

in the streamwise (x-direction) and in the transverse
direction (y-direction). The diameter of the pin-fins is
d ¼ 0:003175 m (0.125 in.). The pitch-to-diameter ratio

in the streamwise direction is set to px=d ¼ 1:06 and in
the transverse direction to py=d ¼ 2:12.
The material properties are also taken from the ex-

perimental cases. The heat sink consists of cast alumi-

num alloy 195. The entering flow profile is uniform due

to two rows of honeycomb flow-straighteners that are

placed in front of the test section. The heat sink is heated

from bellow by an electric resistance heater. A thermal

isolation layer placed between the heater and the alu-

minum base sets the isothermal conditions at the base

bottom.
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As the experimental data were taken at thermal

power of 50, 125 and 220 W, the numerical simulations

are performed at the same heating rates.

4. Governing equations for uniform flow through heat sink

The mathematical model of the flow through the heat

sink is based on the description of porous media flow

given in Section 2. It consists of a mass transport

equation, a momentum transport equation, an energy

transport equation for the fluid flow, an energy trans-

port equation for the solid structure and an energy

transport equation for the heat conductive base-plate.

As all equation variables are already averaged over

the appropriate REV, the averaging symbol � is omitted.

The momentum transport equation for fluid flow is

developed from Eq. (12) with the additional assumption

that the volume average velocity through the heat sink is

unidirectional: v ¼ fu; 0; 0g. As a consequence of conti-
nuity (Eq. (9)), the velocity varies only transversely to

the flow direction. This means that the pressure force

across the entire simulation domain is balanced with

shear forces. As a result, the momentum transport

equation is reduced to

�aflf
o2u
oy2

�
þ o2u

oz2

�
þ 1
2
Cdqfu

2S ¼ Dp
L

: ð19Þ

In order to close the momentum equation (19), the

local drag coefficient Cd has to be determined. In the
present work, the experimental data from Launder and

Massey [2] and Kays and London [1] are used to con-

struct a correlation for the local drag coefficient Cd as a
function of the local Reynolds number.

The boundary conditions for the model equations

attempt to represent the experimental conditions de-

scribed previously. For the momentum transport equa-

tion (19), no-slip boundary conditions are implemented

at all four walls parallel to the flow direction:

uð0; zÞ ¼ 0; uðW ; zÞ ¼ 0;
uðy; 0Þ ¼ 0; uðy;HÞ ¼ 0:

ð20Þ

The input values of the whole-section pressure drop p
are summarized in Table 1.

The energy transport equation for the fluid flow is

developed from Eq. (15) with the unidirectional velocity

assumption. The temperature field in the fluid results

from a balance between thermal convection in the

streamwise direction, thermal diffusion and the heat

transferred from the solid structure to the fluid flow.

Thus, the differential form of the energy equation for the

fluid is:

afqfcfu
oT f
ox

¼ afkf
o2Tf
ox2

�
þ o2Tf

oy2
þ o2Tf

oz2

�

� hðTf � TsÞS: ð21Þ

A correlation based on the experimental data of
�ZZukauskas and Ulinskas [8] are used for the local heat
transfer coefficient h at low Reynolds numbers, whereas
for higher Reynolds numbers, the experimental data

from Kay and London [1] are more appropriate.

Fig. 2. Experimental test section with the pin-fins arrangement.

Table 1

Whole-section pressure drop Dp [Pa] at 50, 125 and 220 W

Calculation 1 2 3 4 5 6 7 8

Dp [Pa] at 50 W 5.0 10.0 20.0 40.0 74.72 175.6 266.5 368.6

Dp [Pa] at 125 W 5.0 10.0 20.0 40.0 74.72 179.3 274.0 361.1

Dp [Pa] at 220 W 5.0 10.0 20.0 40.0 74.72 180.6 280.2 361.1
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For the fluid-phase energy transport equation (21),

the simulation domain inflow and the bottom wall are

taken as isothermal:

Tfð0; y; zÞ ¼ Tin; Tfðx; y; 0Þ ¼ Tifðx; y; 0Þ ð22Þ

whereas the other boundary conditions are adiabatic:

oTf
ox

ðL; y; zÞ ¼ 0; oTf
oy

ðx; 0; zÞ ¼ 0;

oTf
oy

ðx;W ; zÞ ¼ 0; oTf
oz

ðx; y;HÞ ¼ 0;
ð23Þ

The inflow boundary values Tin of the fluid temperature
Tf are summarized in Table 2. It has to be noted that the
bottom temperature Tif is influenced by a temperature
distribution in the conductive base-plate and is therefore

position dependent.

The energy transport equation for the solid structure

is developed from Eq. (18). The heat sink structure in

each REV is not connected in horizontal directions (Fig.

2). As a consequence, only the thermal diffusion in the

vertical direction is in balance with the heat leaving the

structure through the fluid–solid interface, whereas

the thermal diffusion in the horizontal directions can be

neglected. This simplifies the energy equation for the

solid structure to:

0 ¼ asks
o2Ts
oz2

þ hðTf � TsÞS: ð24Þ

For the solid-phase energy transport equation (24),

the bottom wall is prescribed as isothermal, whereas the

top wall is assumed to be adiabatic:

Tsðx; y; 0Þ ¼ Tifðx; y; 0Þ;
oTs
oz

ðx; y;HÞ ¼ 0: ð25Þ

The energy transport equation in the solid base-plate

is developed from Eq. (18). As there is no heat transfer

between solid and fluid phase except at the upper

boundary, the interphase heat exchange term is omitted.

Therefore, the energy transport equation reduces to the

three-dimensional thermal diffusion equation:

0 ¼ ks
o2Tb
ox2

�
þ o2Tb

oy2
þ o2Tb

oz2

�
: ð26Þ

The boundary conditions for the solid base-plate

show the coupled nature of heat transfer between the

porous media flow, Eqs. (21) and (24), and the base, Eq.

(26). Namely, the heat flux at the interface between

porous media and the base must be equal:

ks
oTb
oz

ðx; y; 0Þ ¼ afkf
oTf
oz

ðx; y; 0Þ þ asks
oTs
oz

ðx; y; 0Þ: ð27Þ

The calculated temperature Tb at the boundary is
equal to the temperature Tif , which is used as the

boundary condition (22) and (25) in the energy transport

equations (21) and (24). At the base-plate bottom, iso-

thermal boundary conditions are prescribed

Tbðx; y;�HbÞ ¼ Tg; ð28Þ

whereas the horizontal walls are taken as adiabatic:

oTb
ox

ð0; y; zÞ ¼ 0; oTb
ox

ðL; y; zÞ ¼ 0;

oTb
oy

ðx; 0; zÞ ¼ 0; oTb
oy

ðx;W ; zÞ ¼ 0:
ð29Þ

The bottom boundary values Tg for the base temperature
Tb are summarized in Table 3.

5. Solution methods

The developed transport equations (19), (21), (24)

and (26) as well as the appropriate boundary conditions

(20), (22), (23), (25), (27)–(29) are transformed into di-

mensionless form. Namely, the dimensionless form eases

identification of different mechanisms as well as com-

parison of results with other authors. Moreover, the

Table 2

Inflow temperature Tin [�C] at 50, 125 and 220 W

Calculation 1 2 3 4 5 6 7 8

Tin [�C] at 50 W 23.0 23.0 23.0 23.0 23.02 23.02 23.04 22.85

Tin [�C] at 125 W 23.0 23.0 23.0 23.0 23.16 23.21 23.05 22.81

Tin [�C] at 220 W 23.0 23.0 23.0 23.0 23.07 22.96 22.97 22.90

Table 3

Solid base bottom temperature Tg [�C] at 50, 125 and 220 W

Calculation 1 2 3 4 5 6 7 8

Tg [�C] at 50 W 54.9 43.43 37.2 33.0 30.3 27.9 27.3 26.64

Tg [�C] at 125 W 103.8 74.6 58.8 48.15 41.8 35.73 33.6 32.25

Tg [�C] at 220 W 168.0 114.8 87.0 68.0 56.4 45.2 42.3 40.4
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dimensionless form of equations also enables one to use

more general numerical algorithms that are already de-

veloped and are publicly accessible.

The dimensionless transport equations are then dis-

cretized following principles of the finite volume method

(FVM) [35]. The momentum transport equation (19)

with the boundary conditions (20) is discretized using

the central-difference scheme in both spanwise directions

(y and z). Although the resulting five-diagonal matrix is
symmetrical, it has non-constant terms on the central

diagonal, due to the non-linear drag force term.

Similarly, the energy transport equation for fluid flow

(21) with the boundary conditions (22) and (23) is dis-

cretized in all three dimensions (x, y and z) using the
central-difference scheme for the diffusion terms and the

upwind scheme for the convection term, respectively. In

this case, the resulting seven-diagonal matrix system is

not symmetrical, due to the upwind discretization of the

convection term, nor does it have constant terms, due to

the locally changing heat transfer coefficient h.
The energy transport equation for the solid structure

(24) with the boundary conditions (25) is discretized in

the vertical direction (z) using the central-difference
scheme. The resulting three-diagonal matrix is symmet-

ric with varying diagonal terms as a result of local

variations in the heat transfer coefficient h.
The central-difference scheme is also used to dis-

cretize the energy diffusion transport equation for the

solid base-plate (26) and its boundary conditions (27)–

(29) in all three-dimensions (x, y and z). The resulting
seven-diagonal matrix is basically symmetrical. Never-

theless, the symmetry is spoiled due to the coupled

boundary conditions at the top boundary.

The three-, five- and seven-diagonal asymmetric

matrix systems of discrete non-linear equations are

solved with an iteration procedure, where the precon-

dition conjugate gradient (PCG) method is applied as an

elliptic-hyperbolic equation solver. The detailed de-

scription of PCG method can be found in Ferziger and

Peri�cc [36].

6. Results

Simulations of the heat sink thermal behavior were

performed for 8 different pressure drops Dp and

boundary temperatures Tin and Tg, which are summa-
rized in Tables 1–3. Three sets of calculations were

carried out for heating power of 50, 125 and 220 W to

match the experimental data obtained by Rizzi et al.

[34]. To calculate velocity and temperature fields in

airflow and in the solid structure, 31� 15� 140 finite
volumes were used in x-, y - and z-direction, respectively.
For simulation of diffusion heat transfer in the solid

base-plate the same number of finite volumes were em-

ployed.

6.1. Comparison of whole-section values

The imposed pressure drop Dp causes airflow

through the heated solid structure. As the structure is

cooled, a steady-state temperature field is formed in the

airflow as well as in the thermal conductive aluminum.

Based on the calculated velocity and temperature fields,

the whole-section drag coefficient

Cd ¼
2Dp

qfu2LS
; ð30Þ

and the whole-section Nusselt number

Nu ¼ Qdh
ðTg � TinÞAgkf

; ð31Þ

are estimated as functions of Reynolds number Reh,
which is based on a hydraulic diameter dh of a hypo-
thetical porous media channel. Similarly, the thermal

effectiveness Q=W , which is defined as the ratio between
the heat transferred through the structure

Q ¼ afqfcfuðTout � TinÞA?; ð32Þ

and the mechanical pumping power expended to over-

come fluid friction

W ¼ afDpA?�uu; ð33Þ

is obtained from the calculated velocity and temperature

fields.

The calculated whole-section values of the drag co-

efficient Cd, Nusselt number Nu and thermal effective-
ness Q=W are compared with the experimental data,

which were obtained in the Morrin-Martinelli-Gier

Memorial Heat Transfer Laboratory at the University

of California, Los Angeles [34]. As the experimental

methods cannot provide a detailed picture of velocity

and temperature fields, the comparisons of these whole-

section values serve as the verification of the constructed

physical model and validate the developed numerical

code.

The consistency analysis of the developed model was

also performed. For this purpose the simulations were

done with 10, 20, 40, 80 and 160 grid points in the

vertical (z-direction) for each separate phase: fluid flow,
the solid structure and the solid base-plate. Based on the

simulation results, the whole-section drag coefficient Cd
and Nusselt number Nu were calculated for different
Reynolds numbers. Fig. 3 presents only a part of results

in order to prove consistency of the developed proce-

dure. It is evident that the whole-section drag coefficient

Cd, obtained with 10 grid points, differs for 2% from the
drag coefficient Cd calculated with 160 grid points (Fig.
3a). This relative difference is even smaller in the case of

the whole-section Nusselt number Nu (Fig. 3b). It is
interesting to note that the relative difference of the

whole section drag coefficient Cd or Nusselt number Nu
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is higher at low than at high Reynolds number Reh.
Namely, with increasing Reynolds number a velocity

profile is becoming more flat and it is less influenced by a

number of grid points involved in the calculation.

Fig. 4 shows the whole-section drag coefficient Cd as
a function of Reynolds number Reh at thermal power of
50, 125 and 220 W. In general, the results calculated with

FVM are close to experimental data. The scattering of

the experimental data at higher Reynolds number is due

to transition to turbulence, which is evident on experi-

mental results, but is not captured by the model. The

calculated values show only a slight difference at differ-

ent level of thermal power due to temperature dependent

material properties. At higher thermal power (e.g. 220

W), the airflow through the heat sink is strongly influ-

enced by thermal stratification, due to intensive heating

at the bottom. The resulting buoyancy effects cause

model deficiencies as well as problems with representa-

tion of the collected experimental data.

Fig. 5 show the whole-section Nusselt number Nu as
a function of Reynolds number Reh at thermal power of
50, 125 and 220 W. The Nusselt number Nu distributions
reveal larger difference between the FVM results and the

experimental data. The difference of approximately 10%

is steady throughout the whole range of tested Reynolds

numbers, which is believed to be a consequence of sys-

tematic modeling or experimental error. As the thermal

power is increased to 125 W, the FVM results display

only minor difference of approximately 5% of experi-
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mental values. At even higher thermal powers, the dif-

ference between calculated values and experimental data

becomes negligible. As the difference cannot be observed

at higher thermal power, it is suspected to be a conse-

quence of systematic modeling or experimental error.

Fig. 6 shows the whole-section thermal effectiveness

Q=W as a function of Reynolds number Reh at thermal
power of 50, 125 and 220 W. In all three cases an ex-

cellent agreement between the FVM results and the ex-

perimental data is obtained. The thermal effectiveness

Q=W is increasing with increasing heat input and de-

creasing with increasing Reynolds number Reh. Al-
though, the lower Reynolds numbers bring higher

thermal effectiveness, resulting low heat transfer rates

have to be compensated with a larger heat transfer

surface and consequently with larger size of a heat sink.

In some cases this is not possible due to cost and size

limitations.

6.2. Temperature distribution in heat sink

The detailed temperature fields at different Reynolds

numbers Reh, give an insight into the heat transfer
conditions in the studied heat sink. It should be also

noted that although different heating power (50, 125 or

220 W) is used on the base-plate, there exists a similarity

in force convection heat removal from the heat sink

structure. Namely, higher heat input causes higher ab-

solute temperature levels, whereas the form of isotherms

changes only slightly, due to modification in air material

properties. Therefore, this section presents the velocity

profiles and temperature fields only for thermal power of

125 W.

Fig. 7 gives velocity profiles of airflow at the middle

of the simulation domain (y ¼ 0:5 W) at different Rey-
nolds numbers Reh. The core of the velocity profiles has
a flat shape due to drag associated with submerged pin-

fins. As the drag is smaller at lower Reynolds numbers

Reh, the boundary layer close to the bottom and the top
is much more resolved.

Figs. 8–13 show the temperature field cross-sections

at different Reynolds numbers Reh. The temperatures are
in Celsius scale. The cross-sections of temperature field

are taken at the middle of the simulation domain,

y ¼ 0:5 W. Figures marked with (a) present the tem-
perature field in the fluid flow, whereas figures marked

with (b) reveal the temperature field in the solid struc-

ture and the base-plate.

It is evident that the lowest temperature in the air-

stream is at the beginning of the heat sink; this is on the

left side. The temperature raises as the air passes through

the heat exchanging structure. Therefore, the highest

temperatures are expected at the exit; this is on the right

side. The temperature field in the solid structure is more

horizontally stratified, as the heat enters the structure

from the bottom. As a consequence, the lowest tem-

perature in the solid phase is in the upper left corner and

the highest on the bottom, close to the base-plate.
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Fig. 9. Temperature field in the fluid (a) and in the solid (b), Reh ¼ 371, Q ¼ 125 W.
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Fig. 10. Temperature field in the fluid (a) and in the solid (b), Reh ¼ 544, Q ¼ 125 W.
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Because the heat flux is a vector perpendicular to the

isotherms, a qualitative picture of heat flow can be ex-

tracted from the calculated temperature fields. It can be

seen in Fig. 9 that most of the heat is transferred from

the solid to fluid in the first half of the test section. The

highest heat fluxes appear in the lower left corner, where

the temperature gradients are the largest. The second

half of the heat sink still does not participate in the heat

transfer process.

Fig. 10 reveals that at low Reynolds number Reh, the
temperature field is not fully developed. This means that

air, which enters the test section, is quickly heated due to

its low velocity and leaves the heat sink at the temper-

ature of the solid-phase, unable to receive additional

heat from the source. With increasing Reynolds number

Reh the state of thermal saturation diminishes (Fig. 10).
This heat transfer process also reduces the thermal ef-

fectiveness Q=W , as Reynolds number Reh increases.
The coolant flow unequally lowers the temperature of

the heat conducting structure. This directly changes the

form of isotherms. The effect is not so evident at low

Reynolds numbers (Figs. 8–11). On the contrary, when

the Reynolds number Reh increases, the isotherms be-
come tilted showing the increasing vertical thermal

stratification of the coolant flow.

Comparing the temperature fields shown in Figs. 11–

13, it can be seen that despite increasing vertical thermal

stratification, the flow as well as the solid structure are

getting increasingly isothermal. Namely, with the in-

creasing Reynolds number Reh the airflow leaves the

heat sink at lower exit temperature. Such coolant flow

is thermally unsaturated, still capable of heat removal.

Nevertheless, as the average temperature decreases, the

role of heat conducting base-plate increases. This causes

further reduction in the air and structure temperatures

at the simulation domain exit.

7. Conclusions

The paper represents a contribution to conjugate

heat transfer modeling. In this work the VAT was tested

and further applied to a simulation of airflow through

an aluminum (Al) chip heat sink. The constructed

computational algorithm enables prediction of cooling

capabilities of the selected geometry. It also offers pos-

sibility for geometry improvements to achieve higher

thermal effectiveness.

In the frame of performed work, a general form of a

porous media flow model was developed using the VAT

basic rules. To understand construction of the compu-

tational model, the volume averaging procedure was

described in details. As the flow variables are averaged

over the REV, local momentum and thermal interac-

tions between phases have to be replaced with additional

models.

The same averaging procedure was used to develop a

specific model for flow through the heat conducting

structure of the heat sink. To close the system of the

transport equations, the reliable data for intraphase

transfer coefficients were found in Launder and Massey

[2], �ZZukauskas and Ulinskas [8], and Kays and London
[1]. Using VAT, the computational algorithm is fast

running, but still able to present a detailed picture of the

temperature field in airflow as well as in the solid

structure of the heat sink.

The geometry of the simulation domain and the

boundary conditions followed the geometry of the exper-

imental test section used in the Morrin-Martinelli-Gier

Memorial Heat Transfer Laboratory at the University

of California, Los Angeles. As a calculation technique,

the FVM was selected. The calculations were performed

at heating power of 50, 125 and 220 W, and at eight

different pressure drops. The calculated whole-section

drag coefficient Cd, Nusselt number Nu and thermal ef-
fectiveness Q=W were compared with experimental data

of Rizzi et al. [34] to verify the computational model and

validate the numerical code. The comparison shows a

good agreement between the FVM results and the ex-

perimental data. The numerical results exhibit up to 10%

difference through the whole computational range of

Reynolds numbers.

The detailed temperature fields in the coolant flow as

well as in the heat conducting structure were also cal-

culated. The calculations revealed that with increasing

Reynolds number Reh the flow thermal saturation de-
creases. The airflow leaves the heat sink at lower exit

temperature, still capable of heat removal. This effect

reduces the thermal effectiveness Q=W of the heat sink.

It is also visible that with increasing Reynolds number

Reh the fluid temperature field changes from horizontal

to more vertical stratification. As the plotted three-

dimensional temperature fields reveal the local heat

transfer conditions, they enable corrections and opti-

mization of the heat sink geometry.

The present results demonstrate that the selected

VAT approach is appropriate for heat exchanger cal-

culations where thermal conductivity of the solid struc-

ture has to be taken into account. The performed

calculations also verify that the developed numerical

code yields sufficiently accurate results to be applicable

also in future optimization calculations for heat ex-

changer morphologies.
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